Deficiency in TLR4 signal transduction ameliorates cardiac injury and cardiomyocyte contractile dysfunction during ischemia
نویسندگان
چکیده
Toll-like receptor 4 (TLR4), a proximal signalling receptor in innate immune responses to lipopolysaccharide of gram-negative pathogens, is expressed in the heart. Accumulating evidence have consolidated the notion that TLR4 plays an essential role in the pathogenesis of cardiac dysfunction. However, the molecular mechanisms of TLR4 responsible for ischemia-induced cardiac dysfunction remain unclear. To address the signalling mechanisms of TLR4-deficiency cardioprotection against ischemic injury, in vivo regional ischemia was induced by occlusion of the left anterior descending coronary artery in wild-type (WT) C3H/HeN and TLR4-mutated C3H/HeJ mice. The results demonstrated that blunted ischemic activation of p38 mitogen-activated protein kinase and JNK signalling occurred in C3H/HeJ hearts versus C3H/HeN hearts, while ERK and AMP-activated protein kinase (AMPK) signalling pathways were augmented during ischemia in C3H/HeJ hearts versus C3H/HeN hearts. Intriguingly, ischemia-stimulated endoplasmic reticulum stress was higher in C3H/HeN hearts than that in C3H/HeJ as demonstrated by up-regulation of Grp78/BiP, Gadd153/CHOP and IRE-1alpha. Myocardial infarct, caspase-3 activity and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining demonstrated that C3H/HeN hearts suffered more damage than those of C3H/HeJ hearts during ischemia. Moreover, isolated cardiomyocytes from C3H/HeJ hearts showed resistance to hypoxia-induced contractile dysfunction compared to those from C3H/HeN hearts, which are associated with greater hypoxic activation of AMPK and ERK signalling, better intracellular Ca(2+) handling in C3H/HeJ versus C3H/HeN cardiomyocytes. These findings suggest that the cardioprotective effects against ischemic injury of hearts with deficiency in TLR4 signalling may be mediated through modulating AMPK and ERK signalling pathway during ischemia.
منابع مشابه
Natural Antioxidant-Isoliquiritigenin Ameliorates Contractile Dysfunction of Hypoxic Cardiomyocytes via AMPK Signaling Pathway
Isoliquiritigenin (ISL), a simple chalcone-type flavonoid, is derived from licorice compounds and is mainly present in foods, beverages, and tobacco. Reactive oxygen species (ROS) is a critical factor involved in modulating cardiac stress response signaling during ischemia and reperfusion. We hypothesize that ISL as a natural antioxidant may protect heart against ischemic injury via modulating ...
متن کاملIRAK1 deletion disrupts cardiac Toll/IL-1 signaling and protects against contractile dysfunction.
Myocardial contractile dysfunction accompanies both systemic and cardiac insults. Septic shock and burn trauma can lead to reversible contractile deficits, whereas ischemia and direct inflammation of the heart can precipitate transient or permanent impairments in contractility. Many of the insults that trigger contractile dysfunction also activate the innate immune system. Activation of the inn...
متن کاملThe vestigial enzyme D-dopachrome tautomerase protects the heart against ischemic injury.
The cellular response to stress involves the recruitment and coordination of molecular signaling pathways that prevent cell death. D-dopachrome tautomerase (DDT) is an enzyme that lacks physiologic substrates in mammalian cells, but shares partial sequence and structural homology with macrophage migration inhibitory factor (MIF). Here, we observed that DDT is highly expressed in murine cardiomy...
متن کاملAutophagy protects cardiomyocytes from the myocardial ischaemia-reperfusion injury through the clearance of CLP36
Cardiovascular disease (CVD) is the leading cause of the death worldwide. An increasing number of studies have found that autophagy is involved in the progression or prevention of CVD. However, the precise mechanism of autophagy in CVD, especially the myocardial ischaemia-reperfusion injury (MI/R injury), is unclear and controversial. Here, we show that the cardiomyocyte-specific disruption of ...
متن کاملIschemia induced peroxynitrite dependent modifications of cardiomyocyte MLC1 increases its degradation by MMP-2 leading to contractile dysfunction
Damage to cardiac contractile proteins during ischemia followed by reperfusion is mediated by reactive oxygen species such as peroxynitrite (ONOO(-)), resulting in impairment of cardiac systolic function. However, the pathophysiology of systolic dysfunction during ischemia only, before reperfusion, remains unclear. We suggest that increased ONOO(-) generation during ischemia leads to nitration/...
متن کامل